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A Material Political Economy: Automated Trading Desk and Price 

Prediction in High-Frequency Trading 

Abstract 

This article contains the first detailed historical study of one of the new high-

frequency trading (HFT) firms that have transformed many of the world’s 

financial markets. The study, of one of the earliest and most important such 

firms, Automated Trading Desk (ATD), focuses on how ATD’s algorithms 

predicted share price changes. The article argues that political-economic 

struggles are integral to the existence of some of the ‘pockets’ of predictable 

structure in the otherwise random movements of prices, to the availability of 

the data that allow algorithms to identify these pockets, and to the capacity of 

algorithms to use these predictions to trade profitably. The article also 

examines the role of HFT algorithms such as ATD’s in the epochal, fiercely 

contested shift in US share trading from ‘fixed-role’ markets towards ‘all-to-all’ 

markets. 
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Charleston, South Carolina, is not where I would have expected to find roots 

of the high-technology trading that has reshaped 21st-century finance. The 

past can seem ever-present here: in the beauty of the cobbled streets and 

antebellum houses; in the shaded paths of the College of Charleston, Spanish 

moss swathing its live oaks; in the inescapable reminders that this was once 

North America’s busiest slave port. Nor, if I had happened upon it in the early 

1990s, would I have been likely to make much of a makeshift, computer-

packed office in a 1950s’ cinderblock motel building on Charleston’s Wappoo 

Road, occupied by (as one of them put it) ‘kids, barefoot, t-shirts, short pants’. 

Before a decade was out, however, those kids’ computers were trading 

shares worth over a billion dollars every day (Collier, 2002); at its peak, 

almost one in every ten shares traded in the United States was bought or sold 

by their firm (Philips, 2013).  

	 This paper presents a history of that firm, Automated Trading Desk 

(ATD), within the context of a broader study of the rise of ultrafast, high 

volume, highly automated ‘high-frequency trading’ or HFT (the type of trading 

of which ATD was a pioneer). When ATD began operations in 1989, most 

financial trading still took place directly among human beings, either over the 

telephone or face-to-face on crowded trading floors. Even as electronic 

trading became more widespread in the 1990s and beyond, it was initially not 

usually fully automated: it was conducted by human beings using computer 

screens and keyboards. After 2000, however, algorithmic trading gained 

momentum fast, and now dominates several important markets (including the 

market in US shares). 
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This article is a contribution to what has become known as ‘social 

studies of finance’, the application to financial markets not of economics but of 

wider social-science disciplines such as anthropology, politics, geography, 

sociology and science and technology studies (STS). STS-inflected work has 

been particularly prominent within social studies of finance, and much of that 

work has examined aspects of the transition sketched in the previous 

paragraph (especially the growth of electronic trading by human beings: HFT 

is only gradually becoming a focus).1 For example, Muniesa has examined 

the pathways via which markets have moved from face-to-face interaction to 

the algorithmic matching of supply and demand (Muniesa, 2005 and 2011), 

and Knorr Cetina and Preda have taught us how to conceptualize interaction 

in electronic markets among human traders and between those traders and 

their computer screens (e.g., Knorr Cetina and Bruegger, 2002; Preda, 2013). 

More broadly, Beunza	and Stark, for example, have demonstrated how the 

material layout of trading rooms influences trading, even when that trading is 

electronic (Beunza and Stark, 2004), while Poon has shown (e.g. in Poon, 

2009) how the US mortgage market was reformatted – hugely consequentially 

– by algorithmic credit scoring. There is also a growing body of literature in 

STS on the role of algorithms in economic and social life beyond finance: see, 

e.g., Gillespie (2014). In the background to much STS-inflected work in social 

studies of finance is Michel Callon’s application to ‘economics’ – a term that, 

as discussed below, he uses in a very broad sense – of the actor-network 

theory postulate that all ‘[s]cientific theories, models, and statements… are 

																																								 																					
1	See, for example,	Borch, Hansen and Lange (2015), MacKenzie et al. (2012) and Seyfert (in 

press). 
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performative, that is, actively engaged in the constitution of the reality that 

they describe’ (Callon, 2007: 318; see also Callon, 1998). 

STS-inflected social studies of finance could, however, usefully engage 

more deeply with what one might call the ‘political economy’ of the financial 

system.2 The term is polysemic. It can connote approaches as different as 

Marxism and the analysis of political decision-making using rational choice 

theory; sometimes, it is used simply as a synonym for ‘economics’. Here, I 

intend ‘political economy’ to flag three closely related issues. First, financial 

firms are economic enterprises. They make profits, in recent decades 

rewarding their senior staff – and, less consistently, their shareholders – very 

handsomely.3 They are also at risk of financial failure (a fate to which 

Automated Trading Desk almost succumbed three times in its short history). 

Second, the capacity of financial firms to make profits often depends upon 

systematic forms of advantage and disadvantage, such as occupation of (or 

exclusion from) central roles as intermediaries in financial markets. Third, how 

those markets are organized is a political matter: sometimes explicitly so, 

when political actors seek to change markets or to preserve their current 

organization; always implicitly so, because of the consequences of how the 

																																								 																					
2	Clearly, there has been some concern with issues of political economy, for example in 

Muniesa’s history of the automation of the Paris Bourse (see, e.g., Muniesa, 2005). I am 

arguing, nevertheless, for a greater, more explicit focus on political economy.		

3	ATD’s remuneration policy was more similar to that of a Silicon Valley start-up than a bank. 

All employees received stock and/or options, and some secretaries ‘retired as millionaires’ 

(Whitcomb interview 2). In ATD’s periodic lean times, its chief executives sometimes 

themselves took no bonus, while awarding bonuses to others.		
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financial system is organized for the distribution of income and wealth and for 

economic life more generally. 

From the viewpoint of STS, there is no adequate theoretical treatment 

of political economy to take ‘off the shelf’. For example, Fligstein’s ‘markets as 

politics’ approach (for which see, e.g., Fligstein, 1996 and 2001) helpfully 

focuses on struggles between incumbent firms and their challengers, and on 

the influence of the state on the outcomes of such struggles. Even it, though, 

largely neglects the themes central to STS-inflected social studies of finance, 

above all the STS emphasis on materiality: on artefacts and technical 

systems, on human bodies, on mathematical models not just as sets of 

equations but as material computational procedures (see MacKenzie, 2009).  

So how might a ‘material political economy’ of high-frequency trading 

and other forms of automated trading be developed? This article sketches 

such a political economy, focusing on a thoroughly material question: how do 

HFT algorithms predict price movements?4 The question is deeper than it 

might appear. The efficient market hypothesis of financial economics 

suggests that, at any point, all currently publicly known information has 

already been incorporated into prices, so future price movements can be 

influenced only by future new information, which (if it is genuinely new) cannot 

																																								 																					
4	Algorithms can trade profitably without predicting prices, for example by identifying 

‘arbitrage’ opportunities (in which a financial instrument can be bought more cheaply on one 

trading venue than it can be sold for on another). However, price prediction was central to 

ATD’s algorithms and remains crucial for HFT more widely. 
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be predicted. That, in effect, means that price movements in an efficient 

market are an inherently unpredictable random walk. (‘Efficiency’ is a model, 

not an empirical reality, but much of the time the US stock market seems 

reasonably efficient, in the sense that predicting prices or ‘beating the market’ 

is very hard.) For profitable price prediction to be possible, pockets of 

‘structure’ must therefore exist within the random movements of prices. ATD 

found at least two pockets of powerfully predictive structure; both were 

created by conflictual ‘political economy’ processes.  

The existence of pockets of ‘structure’ is a necessary but not sufficient 

condition for successful predictive trading. Trading algorithms must also be 

able to identify concrete instances of potentially profitable structure quickly 

enough to exploit them. That is a matter of what data are available, to whom 

(or to what), and when. These too are questions of political economy. An 

analogy used by one of my ATD interviewees nicely captures the role of data 

in automated price prediction: ‘It’s as if someone puts certain game pieces on 

the table, and it’s like, okay, I’ve got these pieces of data, let me look at all the 

different ways I might use them’.  

The political-economic point is that not all ‘game pieces’ are put on the 

table. For example, very useful for prediction is a market’s ‘order book’ (a file, 

now always electronic, of the bids and offers that have not yet been 

executed). For instance – to put it simply – if there are many more bids to buy 

a particular stock than offers to sell it, then its price is more likely to rise than 

to fall. However, up until the 2000s, access to the order books of the world’s 

most important share-trading venue, the New York Stock Exchange (NYSE), 

was the fiercely guarded prerogative of the NYSE’s ‘specialists’. Each stock 
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traded on the NYSE had a designated specialist, a trader who, sometimes 

aided by clerks, maintained the order book for it and matched bids to buy and 

offers to sell, or if there was no match could trade himself (nearly all 

specialists were men). The specialist’s privileged role brought with it the 

responsibility to ensure orderly, continuous	trading – which could mean having 

to accept temporary losses – but specialists earned very healthy overall 

profits (see, e.g., Coughenour and Harris, 2003). 

Which ‘game pieces’ should be on the table is typically political in at 

least two senses: first, it is contested; second, government regulatory bodies 

(especially the chief regulator of the US stock market, the Securities and 

Exchange Commission or SEC) increasingly intervene in it. Similarly ‘political’ 

in these two senses are the actions available or not available to a human 

trader or trading algorithm, for instance if the latter predicts a price move. For 

example, by 1990 Automated Trading Desk’s algorithms could send orders 

via a dedicated telephone line from Charleston to computer terminals in the 

trading-floor booths of the NYSE specialists. Once there, orders could in 

principle have been executed entirely automatically and immediately, but 

often weren’t. Specialists could set up their systems so that an order could not 

be executed without them manually pressing ‘enter’ on the terminal’s 

keyboard. That might seem the most minor of material details, but it gave 

specialists ‘a ton of discretion’, as interviewee DM put it, to delay execution 

until a more convenient or – for them – profitable moment. (Single letters are 

used for ATD interviewees, and double letters for those in my wider dataset.) 

 The capacities of ATD’s algorithms to predict and to act were thus 

matters of political economy that went far beyond Charleston. They involved 
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wider conflicts over how US stock trading should be organized (and, as we 

shall see, also over what it should be legal for futures markets to trade). In 

ATD’s first decade, the organization of the financial system was a matter 

external to ATD, an environment to which its algorithms had to be adapted. 

Actor-network theory, however, reminds us that the ‘micro’ (here, the 

capacities of ATD’s algorithms) and the ‘macro’ (the overall organization of 

US share trading) are not fixed in their relative scales: the micro can become 

macro, and vice versa (Callon and Latour, 1981).  

And so it was with ATD. The actions of algorithms began to have 

effects on the organization of the US financial system. ATD’s algorithms – 

along with similar algorithms deployed by other nascent HFT firms – played a 

causal role in a shift from ‘fixed-role’ markets towards ‘all-to-all’ markets. (I 

take the term ‘fixed-role’ from Aspers, 2007, but employ it differently.)5 The 

New York Stock Exchange, as late as the 1990s, was an example of a fixed-

role market. Even a sophisticated financial firm such as ATD could not trade 

directly on it, unless it bought an NYSE membership, which was very 

expensive. To get its orders into the NYSE’s trading rooms, ATD therefore 

had to pay steep fees to a firm that was a member. Within those trading 

rooms, ‘specialists’ had the distinct role, privileges and responsibilities that I 

																																								 																					
5	For Aspers (2007), a fixed-role market is one in which some actors are only ever sellers and 

others only buyers. In the fixed-role financial markets discussed here, any actor can both buy 

and sell, but how they can do so is constrained. Note also that an ‘all-to-all’ market may still 

involve intermediaries, especially marketmakers (see below). However, marketmakers no 

longer have special privileges or responsibilities, and there are no formal barriers to any 

market participant acting as a marketmaker.	
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have just sketched.6 An ‘all-to-all’ market, in contrast, is one in which any 

participant can trade with any other participant, and there are no fixed, 

privileged roles. No financial market is completely all-to-all (in many, indeed, 

fixed roles remain largely intact), but US share trading has moved 

substantially towards all-to-all, and ATD was centrally involved in that shift. 

 Although it is not the article’s main theme, the history of ATD also 

allows me briefly to address twin misleading interpretations of the 

performativity of economics. First, it is not always understood that for Callon 

‘economics’ does not refer only to the academic discipline, and certainly not 

just to economic theory. Economics includes ‘operating methods, calculation 

tools, and technical instruments… algorithms…’, including those that have no 

basis in academic economics (Callon, 2007: 334). Second – and obviously 

relatedly – performativity has been misinterpreted as in effect a version of the 

discredited ‘linear model’ of innovation, in which technologists simply ‘apply’ 

science. For example, in an otherwise insightful analysis of the global financial 

crisis, Ewald Engelen and colleagues view performativity as implying ‘some 

kind of rationalist application of, or formatting by, prior theoretization … [a] 

rationalist grand plan’. They then contrast performativity with ‘bricolage … the 

creative and resourceful use of materials at hand’ (Engelen et al., 2011: 51).  

 If a single proposition is core to the STS view of innovation, it is surely 

that all innovation is bricolage. Lévi-Strauss’s (1966) distinction between the 

myth-making bricoleur and the rationalist scientist is untenable, as Barnes 

																																								 																					
6	The classic sociological study of the trading rooms of the NYSE in their prime is Abolafia 

(1996). 
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pointed out over forty years ago (Barnes, 1974: 58-59). While it is perfectly 

reasonable to view HFT’s history as involving performativity –  as sketched in 

the conclusion below, algorithmic practices have reshaped markets so that 

they have become sociotechnical environments honed to the demands of 

those practices7 – but, in the case of ATD (and, indeed, the other major HFT 

firms represented in my interview sample), it is a history of bricolage, not of 

‘prior theoretization’.  

ATD’s co-founder, David Whitcomb, was an academic economist, a 

specialist in ‘market microstructure’ theory (see, e.g., Cohen, Maier, Schwartz 

and Whitcomb, 1981). In principle, ATD could have implemented that theory 

in its algorithms: the classic focus of microstructure theory is marketmakers 

(traders, such as the NYSE’s specialists, whose role is to ‘provide liquidity’, 

constantly quoting a ‘bid’ price at which they will buy the asset being traded 

and a higher ‘offer’ price at which they will set it), and ATD was primarily an 

automated marketmaker, albeit not an official one.8 However, ATD’s 

algorithms were not implementations of theoretical models of marketmaking. 

Whitcomb’s immediate inspiration was more mundane: his previous efforts to 

predict the outcomes of horseraces. More broadly, ATD survived its three 

																																								 																					
7	Algorithms are not representations, and so their performativity does not generally take the 

form of a representation becoming ‘more true’ by being employed in economic practice (as in 

MacKenzie, 2006). Nevertheless, algorithmic prediction is still an epistemic matter, because 

(as Martha Poon put it to me) ‘being right’ –  making accurate predictions – is an epistemic 

quality. 	

8 ATD’s systems often simply posted either a bid or an offer, not both simultaneously, as an 

official marketmaker normally has to.	
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brushes with bankruptcy precisely because it was a collective bricoleur, 

prepared to make ‘creative and resourceful use of materials at hand’.  

	 This article has three main sections, in addition to this introduction, a 

discussion of data sources, and the conclusion. The first main section, ‘A 

capsule history of Automated Trading Desk’, sketches the overall history of 

ATD until 2007 (when it was acquired by Citigroup for $680 million, and its 

focus shifted away from HFT). The next two sections then delve in greater 

depth into how ATD’s algorithms predicted prices. Those two sections flesh 

out the ‘material political economy’ of price prediction that this paper 

proposes, and the second of them (along with the conclusion) also sketches 

how ATD’s algorithms contributed to the shift in US share trading from fixed-

role markets towards all-to-all markets.  

 

Data sources  

Investigating high-frequency trading empirically poses considerable 

challenges. With the exception of a small number of datasets made available 

to financial economists by exchanges, and datasets privately accessible to 

researchers working for market regulators, there are no direct traces in 

publicly-available data of whether any given bid or offer is placed or any 

particular trade consummated by an HFT firm, so quantitative research often 

has to employ proxies for HFT activity such as the extent of electronic 

message traffic on an exchange’s system. However, HFT is actually a less 

secretive domain than the more lurid popular accounts of it might suggest. 

Although accumulating this total took five years, in aggregate I have 
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conducted 65 interviews with 51 founders, employees or former employees of 

HFT firms.  

The chief difficulty of the interviews was enquiring in adequate depth 

into the material practices of HFT, which is a natural goal for a researcher 

who comes to the social studies of finance from STS. HFT firms fiercely 

protect the intellectual property crystallized in their algorithms, and over-

intrusive questioning would have led interviews to be terminated. The solution 

found was iterative. In early interviews, I began to build up a sense of the 

predictive techniques and other practices that were common knowledge in the 

industry, and known to be common knowledge by all experienced 

practitioners. It was then possible to ask in more detail about matters such as 

the pockets of ‘structure’ on which these techniques rely. That in turn led to a 

broadening of the research: precisely because the material practices of HFT 

often turned out to depend upon matters of political economy, it was 

necessary to research not just HFT firms but also the exchanges and other 

trading venues involved, the influence of regulation, and so on. 

I was led to my first ATD interviewee, A, by a contact who had worked 

for one of the trading venues I was researching: Island (see below). 

Interviewee A then put me in touch with ATD’s co-founder, David Whitcomb, 

who agreed to three interviews, and introduced me to a second early ATD 

employee, interviewee B. The latter allowed me to interview him over nearly 

two full days. Finally, my broader HFT research led me to a third early ATD 

staff member (interviewee C). 
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Oral-history interviewing has two well known perils. First, interviewees 

may wish to present themselves and their enterprises in an unduly favourable 

light. Second, their recollection of the details of events decades in the past is 

bound to be incomplete. My interviewees, however, did not ‘spin’ ATD’s 

history as entirely successful: they were open about its failures. The problem 

of partial recall was alleviated by Whitcomb giving me access to letters he had 

written in ATD’s early years to its shareholders (he was its chief executive and 

then chair). These letters were not for public consumption (ATD was a 

privately-held company, not publicly listed), and were frank about ATD’s 

difficulties: most of ATD’s shareholders were friends or family of Whitcomb, or 

ATD employees. The letters clarified exact chronology, provided crucial 

information on the trading experiments discussed below, and (because they 

often detailed ATD’s profits or losses) helped me understand its history as an 

economic enterprise. Interviewee B also showed me a large collection of 

documents, covering primarily technological matters. Another check on the 

plausibility of what I was told by my ATD interviewees was the wider interview 

sample, many of whom worked for similar, albeit later-established, HFT firms, 

and some of whom had knowledge of ATD’s trading because they were 

involved in running trading venues in which ATD was active. 

 

 

 

A capsule history of Automated Trading Desk 
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Whitcomb’s initial plan for ATD was not what has become known as high-

frequency trading but the provision of what would now be called ‘execution 

algorithms’ that institutional investors could use to break up big orders into 

small parts and execute them automatically. In the 1980s, he was hired as a 

consultant by the pioneering screen-based share-trading system Instinet. First 

established in 1969, Instinet was intended to allow institutional investors to 

trade directly with each other, circumventing expensive fixed-role markets 

such as the New York Stock Exchange. Take-up was, however, disappointing, 

and Whitcomb proposed to Instinet that it should provide its clients with 

execution algorithms to use on the system (Whitcomb, interviews 1 and 2).  

Instinet did not adopt Whitcomb’s suggestion. However, a former 

student of his, James Hawkes (who taught statistics at the College of 

Charleston, and ran a small firm, Quant Systems, which sold software for 

statistical analysis), traded stock options, and had installed a satellite dish on 

his garage to receive a stock-price datafeed. Hawkes mentioned this to 

Whitcomb, and the two men decided on a joint venture, which they christened 

Automated Trading Desk. Whitcomb raised most of the new firm’s capital of 

$100,000 (see, e.g., Whitcomb, 1989a); Hawkes provided the programmers, 

two College of Charleston students who wrote statistical software for him. 

 Whitcomb already had in mind execution algorithms that had predictive 

capacities and could thus optimize how they sent orders to market. He and 

Hawkes had earlier collaborated on a regression-equation model to predict 

the outcomes of horseraces. Bookmakers’ large ‘vigs’ or ‘takes’ (the profits 

they earn by setting odds unfavourable to the gambler) meant the model did 
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not earn Hawkes and Whitcomb money, but the equation displayed some 

predictive power (Whitcomb interviews 1 and 2).  

Could an analogous model be developed to predict stock prices? 

Whitcomb set to work, designing the relatively simple regression-style model 

described in the next section, faxing instructions and formulae to Charleston 

to be turned into code by Hawkes’s programmers; Whitcomb, who taught 

finance at Rutgers University, lived in New York. (I write ‘regression-style’ 

because, although Whitcomb’s model had the mathematical form of a 

regression equation, in its first version its coefficients were simply Whitcomb’s 

informed guesses rather than estimated statistically.) Around the equation, 

Whitcomb designed and the programmers coded the components of a full 

automated trading system: a module to process incoming market data; a 

‘pricing’ module implementing Whitcomb’s equation; a module that tracked the 

system’s accumulated trading position in each stock, and adjusted its trading 

strategy accordingly; a decision module that calculated how best to trade 

based on the existing trading position and the pricing module’s predictions; a 

module that dispatched the resultant orders and if necessary cancelled 

existing orders; a module that calculated in real time the profits or losses 

being made; and so on – altogether some 80,000 lines of software 

(interviewee B).  

 ATD was unable to find a mainstream investment-management firm 

willing to risk being the first to use an execution algorithm, perhaps particularly 

one as sophisticated as ATD’s system would make possible: ‘many 

institutions … said that’s a very interesting idea, David. I’d be interested in 

being your second customer’ (Whitcomb interview 2). In the summer of 1989, 
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however, a trading simulation convinced Whitcomb that ATD could make 

money trading on its own behalf, not just by helping clients trade. Whitcomb’s 

accountant introduced him to a man (whom he does not wish to have named) 

who ran what has subsequently become a well-known hedge fund. It provided 

the capital for experiments in automated trading, described in the next 

section, that were loss-making – the simulation ‘overstated predicted trading 

profits by 200%’, says Whitcomb (email to author, 24 March 2016) – but 

demonstrated that Whitcomb’s model had predictive power. That persuaded a 

leading investment bank, with all the advantages that came from its central 

role in the financial system, to employ ATD and its model in trading on the 

New York Stock Exchange (again, Whitcomb has requested that I do not 

name the bank). 

 ATD’s failure to find clients and its loss-making experiments meant that 

it earned almost no money in 1989 or 1990 (Whitcomb, 1990a & b). It 

survived only because Whitcomb and his wife invested additional capital and 

Hawkes’s two programmers (who became central to ATD, and eventually took 

on leading management roles in the firm) agreed to receive half their pay in 

newly-issued ATD shares, along with existing shares contributed by Hawkes. 

However, the collaboration with the investment bank made ATD profitable. It 

moved into offices in a strip mall in Mount Pleasant, across the Cooper River 

from Charleston, and essentially a suburb of the latter. ‘We’re on the top floor 

of a two story brick building (important in low-lying, hurricane-prone 

Charleston)’, Whitcomb told ATD’s shareholders. In September 1989, ATD 

had been shut down for two weeks by Hurricane Hugo, a giant storm that 

made landfall just north of Charleston (Whitcomb, 1995; Whitcomb, 1989b). 
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 ATD was nevertheless soon in financial trouble again. The profitability 

of its NYSE trading gradually declined, and in 1994 ‘we … made practically no 

money’ (Whitcomb, 1995). Salvation came from bricolage: ATD began 

automated trading in the second of the US’s two main stockmarkets, Nasdaq, 

employing a predictive technique, described below, that owed little to its 

earlier model (and nothing to economics in an academic sense). ATD learned 

the technique from successful – but, as Whitcomb puts it, ‘despised’ – human 

traders. (Why they were ‘despised’ is explained below.) 

 Thus began ATD’s Wunderjahre, from 1995 to 2001. As the fixed-role 

structure of US share trading began to erode, the opportunities for automated 

trading grew. ATD expanded to 23 employees by October 1999 (Wipperfurth, 

1999) and in the early 2000s to around 70 (see Table 1). Around ATD’s 

original pricing module were added new trading algorithms; there were twenty 

such algorithms by the end of the 1990s (Wipperfurth, 1999). Those 

algorithms were often written by staff members who were simultaneously 

traders and programmers, with the simpler scripting languages Perl and 

Python made available to those not fluent in the C or C++ of ATD’s core 

systems. In ATD’s early days in the old motel, its trading could be conducted 

by a single computer, with – as interviewee B told me – the various software 

modules communicating ‘within one computer’s memory’ (although multiple 

machines were needed for redundancy and to cover the full range of stocks 

that ATD traded). By the early 2000s, ATD’s trading needed a large-scale 

integrated network of ‘distributed multiple programs across multiple 

machines’, the latter numbering in the hundreds (interviewee B). 
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 Simultaneously, the sophistication of ATD’s automated price prediction 

was increased.  As the variables available as inputs into prediction increased 

(see this article’s conclusion) from an initial handful employed in its first model 

to around a hundred (Schmerken, 2011), so the model was elaborated. A 

new, mathematically different, model was also built. Instead of directly 

estimating, using a regression equation, a predicted price of the stock in 

question (as the original model did), the new model employed discriminant 

analysis – first developed by the British statistician R.A. Fisher (1936) – to 

estimate whether the price of a stock was most likely to go up, go down, or 

remain unchanged. The new model also generated an estimate of the level of 

certainty of its prediction. The certainty level influenced, for example, the 

choice between placing a new ‘marketmaking’ order that could not be 

executed immediately (which would be done if the certainty level was 

‘Normal’) or the more expensive option of executing against another firm’s 

existing order, which required ‘High Certainty’ (Whitcomb interview 3; 

interviewee B’s papers, Pricing Engine file).  

At a time when ATD’s competitors were still almost always human 

beings, with their inevitably slow reaction times, trading with keyboard and 

mouse, the simple fact that its trading was computerized gave it a 

considerable advantage. In 1995, ATD had at most a handful of competitors in 

large-scale automated marketmaking in US shares. Even by 2001, firms such 

as Chicago’s Getco and Jump, and Kansas City’s Tradebot (all three of which 

were to become formidable competitors to ATD) were still in the early stages 

of their move from HFT in futures to shares. In the first quarter of 2001, for 

example, ATD traded around 55 million shares a day, and made an average 
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profit of almost 0.9 cents per share (calculated from the figures reported to 

ATD’s shareholders in Whitcomb, 2001), twenty times what HFT interviewees 

in my larger dataset regard as a healthy profit rate nowadays. ATD built a $35 

million, hurricane-resistant headquarters (designed in modernist, campus-like 

style, with a reflecting pool and landscaping) in Mount Pleasant, choosing a 

postal address, 11 eWall Street, that ambitiously echoed that of the – still at 

core largely manual – New York Stock Exchange.  

 ATD’s success was a matter of local pride, with South Carolina’s 

governor attending the new building’s groundbreaking ceremony. When The 

State sent reporter Joe Collier to Mount Pleasant in 2002 to report on ATD, 

his story was headlined, ‘Lowcountry Firm Among High-Tech’s Best’ (the 

Lowcountry is South Carolina’s coastal region from the border with Georgia 

northwards). Collier was struck by the incongruously expensive cars in what 

was still a strip mall’s carpark. He met a 21 year-old College of Charleston 

student who, in two years working for ATD, had earned enough to buy ‘a 

home and a Porsche Boxter’ (Collier, 2002). 

 Even as Collier wrote his story, however, all was again not well with 

ATD. In 2003, the firm ‘recognized a loss of $16.0 million’ (Swanson and 

Whitcomb, 2004), a huge sum for what was still only a medium-sized 

enterprise. There were several reasons for the renewed crisis, but –

paradoxically – one was a change in the pricing of US stocks that Whitcomb 

had advocated energetically. The traditional minimum price increment had 

been an eighth of a dollar, reduced to a sixteenth (6.25 cents) in 1997. These 

large ‘tick sizes’ meant a ‘spread’ between the prices of the highest bid and 

lowest offer for a stock of at least 6.25 cents, keeping marketmakers’ profits 
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high and imposing non-trivial costs on other traders and investors. There was 

fierce Wall Street resistance to reducing the minimum increment, but following 

Congressional testimony by Whitcomb and others, and pressure from 

Congress on the SEC, the latter mandated ‘decimalization’: the transition to 

pricing in dollars and cents, a transition that was completed by April 2001. 

Whitcomb had expected spreads to stabilize at around 2.5 or 3 cents; almost 

immediately, they collapsed, for most heavily-traded stocks, to a single cent 

(Whitcomb interviews 2 and 3). 

 It was a decisive moment in the shift from human to algorithmic trading: 

with spreads of a single cent between the highest bid and lowest offer, 

marketmaking by human beings was no longer economically viable. Yet the 

shift hurt ATD. It was, after all, itself a marketmaker, even if unofficial, and 

smaller spreads reduce marketmakers’ revenues. Furthermore, there had 

previously been profit opportunities in the difference between the coarse 

pricing grids of mainstream venues such as Nasdaq and the finer grids of new 

venues, especially Island (see below), whose minimum increment was 1/256th 

of a dollar. 

 Another reason ATD’s trading revenues declined from mid-2001 

onwards was that increasing numbers of other firms had also begun high-

frequency trading. ATD soon came to realize that its systems, though faster 

than the fastest human, were most likely slower than those of some of these 

new competitors. The firm had been a happy workplace. Although HFT was 

demanding and often stressful, it had the enjoyable excitement of a high-

stakes, immersive game. ATD’s co-founder James Hawkes, who stepped 

aside after around a year to concentrate on his other firm, Quant Systems, 
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told Charleston’s Post and Courier two decades later why he regretted 

leaving: ‘I gave up my dream … to play a game for money that I could use a 

computer to play with’ (Kearney, 2012). ATD’s young trader-programmers 

would ‘take … out frustration and stress’ at the end of the trading day by using 

their powerful, interconnected computers to play ‘shooter games, 

Counterstrike and Doom and Quake’ before ‘head[ing] back to their office and 

… crunch on numbers and work on code’. They would uncomplainingly take 

on (and even regard as ‘fun … unlike today’) the material bricolage required to 

build a pioneering trading system: ‘these were days when I was on a ladder 

running cable through the ceiling … days … splicing cables’ (interviewee B; 

interviewee C). By 2003, however, the fun seemed to have evaporated, as 

interviewee B’s files reveal: ‘From the troops … Overworked … No 

bonuses/need more money … No end in sight … Unrealistic 

expectations/demands’ (Minutes for weekly Team-Leader meeting, 

September 3, 2003). 

 ATD responded by cutting costs and raising capital (it sold and leased 

back its new headquarters). It stepped up efforts to improve its pricing engine, 

and set up ‘a taskforce to attack latency’ (Whitcomb interview 2): to eliminate 

delays in its systems. Considerable speed-up was achieved, but ATD’s war 

on latency also caused collateral damage. Updating an algorithm, a young 

trader-programmer accidentally interchanged a plus sign and a minus sign. 

‘Unfortunately, the … error was in the interpretation of inventory [the 

program’s holdings of shares]’. Rather than keeping inventory safely close to 

zero – as was the intention – the program therefore increased it in ‘geometric 

progression… [it] doubled and redoubled and redoubled and redoubled’. It 
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took only 52 seconds for the trader to ‘realize … something was terribly wrong 

and he pressed the red button [to stop trading]. By then we had lost $3 million’ 

(Whitcomb interview 2). ATD was sharply aware of the risks of errors in 

programs and systems – the firm had suffered an almost crippling loss in the 

late 1980s, when a flaw in Instinet’s systems allowed what Whitcomb had 

believed to be a trading simulator to make real trades – and ATD’s systems 

had had risk controls that would have stopped the geometric progression 

before it caused serious damage. Those controls, however, had been 

removed in the efforts to reduce delays. 

 Most important to ATD’s survival in the 2000s was that once again it 

found a ‘creative and resourceful use of materials at hand’ (Engelen et al., 

2011: 51). It deployed the modelling and technological expertise built up in its 

HFT to become one of the first of a new generation of high-technology 

‘wholesalers’: firms that act as marketmakers for orders from retail investors. 

Unlike professional market participants, members of the general public rarely 

possess information not already known to the market at large. Even with one-

cent spreads, therefore, a wholesaler whose costs are low enough (because, 

like ATD, its marketmaking is automated) can afford to pay retail brokerages 

to send it their customers’ orders, and still make a steady profit executing 

those orders. 

 Although these retail orders had to be processed quickly by ordinary 

human standards, and automated price prediction was still needed in order for 

algorithms to decide whether to fulfil an order internally or send it on to the 

public markets, the demand for speed was much less than in HFT in those 

markets: ‘you literally have hundreds of milliseconds or maybe up to a second 
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to respond’ (interviewee A). Wholesaling not only enabled ATD to survive the 

decline in its HFT revenues but persuaded Citigroup to buy the firm: ATD’s 

‘wholesale marketmaking arm … is what Citi acquired’, says interviewee A. 

For nine years Citi kept ATD’s Mount Pleasant offices open, but in May 2016 

Citi sold ATD’s wholesaling business to the Chicago hedge fund Citadel, 

which closed it, merging it into its own wholesaling activities. 

 

Predicting prices in fixed-role markets 

Let me now return to the central thread in ATD’s history as an independent 

firm, evident from its first trading through to its successful transformation into 

a wholesaler: price prediction. As noted, the immediate antecedent to 

Whitcomb’s efforts to predict stock prices was his and Hawkes’s horserace 

predictions, and the two efforts had the same mathematical form: that of a 

linear regression equation, in which the values of a number of ‘independent’ 

or ‘predictor’ variables are employed to predict the value of a ‘dependent’ 

variable.  

 In the case of horseracing, the variable to be predicted was ‘the horse’s 

speed at that distance’, and the predictor variables included ‘the weight the 

horse was carrying today relative to the other horses, the jockey’s previous 

winning percentage, the horse’s speed in the past relative to other horses, 

some dummy variables for the kind of race’, all of which were publicly 

available information (Whitcomb interview 2). In the case of share trading, the 

dependent variable to be predicted was what Automating Trading Desk came 

to call the ‘ATV’ or ‘adjusted theoretical value’ of the stock in question, a 
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prediction of its price 30 seconds in the future. (ATD experimented with 

different time horizons, but found the exact choice not to be critical.) What, 

though, were the predictor variables that could be used? They too had to be 

public, and knowable in Charleston without undue delay. (In its later years, 

ATD – like other HFT firms – placed computer servers in the same buildings 

as exchanges’ systems, but originally all its computing was done in first its 

Charleston and then its Mount Pleasant offices.) 

 The trading venue from which it was easiest to obtain data was 

Instinet. Its subscribers were provided with a terminal linked by a modem and 

telephone lines to Instinet’s central computer systems. On the terminal’s 

green screen, ‘supply’ and ‘demand’ were displayed in the form of an 

anonymous list of the bids to buy and offers to sell each stock. By the late 

1980s, disappointing volumes of trading had led Instinet to allow not just 

institutional investors but also other professional market participants to use its 

system, although it gave institutional investors the capacity to mark their 

orders ‘I-ONLY’, allowing only other institutional investors to see them 

(Instinet, 1988: 12). ATD subscribed to Instinet, and worked out how to 

‘screen scrape’ (interviewee C): to connect the modem directly to an ATD 

computer that decoded the incoming stream of binary digits that drove the 

terminal’s screen. 

 The bids and offers on Instinet were, however, a poor guide to the 

overall balance of supply and demand for a stock, because Instinet remained 

marginal: in 1989, only around 6 million shares a day were traded on it (about 

3 percent of total share trading). The dominant venue was still the New York 

Stock Exchange, whose trading rooms handled around 150 million shares 
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every day (McCartney, 1990). Since the 1870s, the NYSE had disseminated, 

originally via the stock tickers described by Preda (2006), the prices at which 

shares had been bought and sold and the sizes of transactions. By the 1980s, 

the prices and sizes of the best (i.e. highest priced) NYSE bid and best 

(lowest priced) offer were also available electronically. 

 By the late 1980s, a number of companies had rented capacity on 

communications satellites to transmit these and other financial data to places, 

such as Charleston, far from major centres. (For all its ‘high-tech’ nature, 

satellite transmission is now rarely used in HFT, because of the longer 

distances signals must travel and the processing delays in the satellite’s 

transponder.) ATD subscribed to one such service, Standard & Poor’s 

ComStock (a manual for which is still in interviewee B’s files: S&P ComStock, 

1990). ATD received the signals first via the satellite dish on top of Hawkes’s 

garage – in which the ATD programmers worked in a cubicle – and then via a 

dish on the roof of the old motel on Wappoo Road. 

 ComStock, however, could not report the full balance of supply and 

demand on the NYSE: the full ‘book’ of unexecuted bids and offers was still 

private to a stock’s NYSE ‘specialist’. Initially, therefore, ATD’s regression 

model simply used ‘the size of the [best] bid relative to the size of the [best] 

offer’, along with ‘a short-term trend variable in the transaction prices of the 

stock’ (Whitcomb interview 3). Later, the firm constructed another proxy for 

the still incompletely known balance of supply and demand on the NYSE. 

ATD’s system calculated two variables, ‘down volume’ and ‘up volume’, which 

indicated whether transactions were on average taking place at the best price 

at which there were bids to buy or at the higher price at which there were 
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offers to sell. If the latter, for example (if, in other words, ‘up volume’ 

exceeded ‘down volume’), ‘that’s indicating well, gosh, everybody seems to be 

paying up’ (interviewee B), and thus a price rise was likely.  

 More important for the predictive capacity of ATD’s algorithms, 

however, than any of these variables was a variable that – paradoxically – 

had its origins in the most intensely embodied human trading arenas in the 

US: Chicago’s crowded open-outcry futures ‘pits’. One such pit, in the 

Chicago Mercantile Exchange’s twin-towered skyscraper, traded futures 

contracts based on the Standard & Poor’s 500 index, which tracks the 

changing prices of the US’s leading stocks. The very existence of these 

contracts was the result of a prolonged battle by the Chicago exchanges. 

Although originally they traded futures on grain and other agricultural or 

physical commodities, they had long wished to expand into the trading of 

futures on stock indices.  

The equally long-standing barrier to this trading was that the law of 

Illinois – and that of many other jurisdictions in the US and overseas – drew 

the distinction between a legitimate futures contract and a bet based on 

whether ‘physical delivery’ could occur. (Gambling was against the law in 

Illinois and most of the US.) It had to be possible for a futures contract to be 

settled at its maturity by the seller of the future delivering the underlying asset 

to the buyer. In practice, physical delivery was rare, but if it was not possible 

then the courts would most likely interpret the contract as an illegal wager 

(MacKenzie, 2006; Millo, 2007). 
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Unlike grain, a stock index is a mathematical construct, and settling a 

future on an index by the delivery of huge numbers of share certificates would 

be at best clumsy. However, Leo Melamed, who led the Chicago Mercantile 

Exchange, had initially trained as a lawyer, and knew that the bans on 

gambling in the US were state bans, which a Federal body could pre-empt. As 

he put it in his memoirs, ‘buried deep in my head was a plan that only a 

federal agency could carry out: remove the requirement of physical delivery in 

the mechanics of our markets’ (Melamed and Tamarkin, 1996: 216, emphasis 

in original).  

In the early 1970s, Melamed responded to one of the futures markets’ 

periodic crises by supporting the establishment of a new Federal futures 

regulator. Active lobbying by him and others made possible the 1974 

amendments to the Commodity Exchange Act that established the new 

regulator, the Commodity Futures Trading Commission (CFTC). The new 

regulatory body did not immediately welcome the abandonment of the 

traditional way of distinguishing a futures contract from a bet. However, the 

election of President Reagan changed the regulatory climate, and the 

subsequent appointment of one of Melamed’s allies, Philip McBride Johnson 

(former Counsel to the Chicago Board of Trade), as CFTC chair facilitated the 

change. In 1982, the Chicago Mercantile Exchange began to trade S&P 500 

futures.  

The new contract offered an attractive way of expressing a view on 

whether overall US stock prices were more likely to rise or to fall, or of 

hedging against the latter possibility. A verbal exchange or eye-contact and 

hand signals between two traders in the S&P pit in Chicago was quicker and 
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simpler than trying to buy or sell hundreds of stocks on the NYSE or Nasdaq 

(especially given the regulatory constraints on short sales: sales of shares 

one does not yet own). Far less capital needed to be put up in advance to 

back up a futures trade than a share purchase of equivalent size, giving 

futures greater ‘leverage’, as traders put it. It quickly became clear that, in 

consequence, new information relevant to the overall value of US stocks 

usually first influenced Chicago futures prices and only slightly later the prices 

of the underlying stocks (for econometric evidence of this, see Hasbrouck, 

2003, and the literature cited there).  

‘Pit reporters’ employed by the Chicago exchanges turned traders’ 

shouted or hand-signalled deals into an electronic stream of futures prices. 

That stream flowed to data services such as ComStock, and from there into 

ATD’s computers. Futures prices were ‘the prime market indicator that we 

were using’, as Whitcomb puts it; ‘definitely the key variable’ (interviewee B). 

So important were they, that ATD’s system had a ‘futures only’ mode, in which 

all other predictors were switched off.  

 Whitcomb’s model, incorporating futures prices and the other variables 

discussed above, displayed predictive capacity in its first test, in September 

1989. Because Instinet was an electronic system, and ATD could trade 

directly on it, it was the venue chosen for this test. As Whitcomb reported to 

ATD’s shareholders, the model ‘was not perfect’, and ATD ‘did some fine 

tuning while we were trading’, but ATD’s experiment still earned gross trading 

revenues of around 2.5 cents per share traded (Whitcomb, 1989b). To use 

Instinet, however, ATD had to pay commissions of around 4.5 cents per 

share.  
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A portion of those commissions was then returned to ATD as a ‘soft 

dollar’ reward for using Instinet. (‘Soft dollars’ were, and are, one of the 

reasons big broker-dealers,9 often divisions of major investment banks, kept 

central roles in share trading. In return for an investment-management firm 

paying trading commissions to a broker-dealer, it received – and receives –

‘free’ research reports, along with, in the past, perks such as subsidized travel 

and sometimes outright cash rewards. The economic rationale is that trading 

commissions are charged not to investment-management firms but to the 

pension funds, mutual funds and other savings that the firms manage; such 

commissions are therefore not ‘hard dollars’ – direct expenses – from the 

viewpoint of investment-management firms. However, cash rewards and other 

benefits – getting ‘free’ research saves hard dollars – went directly to those 

firms.) Even Instinet, although designed to allow investment-management 

firms to trade cheaply with each other, had to offer those firms soft dollar 

incentives to do so. However, the hedge fund sponsoring the trading 

experiment required ATD to pass Instinet’s soft dollar payments to it 

(Whitcomb, 1989b).  

ATD had, of course, been aware of Instinet’s commission rates. A 

problem it had underestimated, however, was that in opening up its system, 

Instinet had allowed broker-dealers access. Their central roles in all forms of 

US share trading meant that they possessed information (about their clients’ 

intended trading, for example) that could not be deduced from an Instinet 

screen. As Whitcomb told ATD’s shareholders, ‘broker-dealers are always 

																																								 																					
9	A broker executes orders on behalf of a client; a broker-dealer also trades on its own behalf.	
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active in the market and possess the most current “fundamental” information 

and orderflow information for the stocks they trade’. Instinet’s own traders 

(who acted for firms not prepared to use its system directly) told ATD that it 

was getting ‘bagged’: broker-dealers would buy from ATD when they had 

information that meant prices were likely to rise, and sell to it when they 

expected prices to fall (Whitcomb, 1989b). In effect, broker-dealers’ 

occupancy of a central role in a fixed-role market gave their human traders 

predictive capacities that, at crucial moments, were greater than those of 

ATD’s algorithms. 

 For its next trading experiment, ATD shifted from the convenient but 

peripheral Instinet system to the New York Stock Exchange. ATD could trade 

on the NYSE only via a member firm, and these firms’ usual commissions –

which in the late 1980s averaged nearly 7 cents per share (Berkowitz, Logue 

and Noser, 1988: 104) – would have rendered it impossible for ATD to trade 

profitably. However, Whitcomb found an NYSE member, a major investment 

bank, that had an internal trading group that also used predictive models in 

share trading (albeit with a much longer time horizon than ATD’s), and 

therefore understood immediately that because ATD’s trading was automated, 

the bank would not have to provide it with many of the services that most 

clients needed. In the light of this difference, ATD was able to negotiate 

specially reduced commissions of only 3 cents per share. The investment 

bank also provided high speed modems, set up two dedicated telephone lines 

between ATD’s Charleston office and the bank’s Manhattan headquarters, 

and allowed ATD’s electronic orders to flow from there through its high-speed 

connection to the specialists’ booths in the NYSE’s trading rooms. During the 
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test, conducted in April and May 1990, ATD traded 3.2 million shares, and its 

model again showed predictive power: the firm’s gross trading profit averaged 

1.9 cents per share (Whitcomb, 1990c). That, however, was less than the 

commissions it was paying the bank. Again, ATD was trading at a net loss to 

the hedge fund sponsoring the experiment. 

 The investment bank, however, knew that it itself could trade at a cost 

much lower than even the reduced commissions it charged ATD. It therefore 

proposed to ATD an arrangement via which ATD would pay only an estimate 

of the bank’s actual costs of trading (around 1.4 cents per share), while the 

bank would keep the bulk of ATD’s profits, on a sliding scale that equated to a 

roughly 75:25 split between it and ATD (Whitcomb, 1990c). As noted above, it 

was this arrangement that allowed ATD to begin trading profitably, and thus 

secured – at least temporarily – the firm’s survival.  

Viewed through the lens of what in 1990 was still an almost intact fixed-

role market, the arrangement could be viewed as equitable. It ‘was a very fair 

and honourable deal’, says Whitcomb: ‘I’ve only praise for [the investment 

bank]’ (interview 2). By 1990, however, a tiny, initially scarcely noticed breach 

in the fixed-role system had been created. Within less than a decade, it was to 

start the system unravelling, and ATD was to be at the heart of the process. 

 

‘Among the despised’ 

The breach was in Nasdaq, the National Association of Securities Dealers 

(NASD’s) Automated Quotation System. Set up in 1939, the NASD was an 



	 32	

SEC-encouraged response to widespread fraud in ‘over-the-counter’ – i.e., 

not exchange-based – share trading. (The NYSE and other exchanges 

imposed requirements on companies seeking to list their shares, and shares 

that traded ‘over-the-counter’ were originally usually those whose issuers 

could not meet those requirements. Later, technology companies such as 

Apple, Microsoft, Intel and Cisco, which could have listed on the NYSE, often 

chose Nasdaq instead.) Launched in February 1971, again in part in response 

to pressure from the SEC for greater price transparency, Nasdaq was an 

electronic system for the on-screen dissemination of price quotations (bids to 

buy and offers to sell) from the NASD’s authorized marketmaking firms.  

 In order directly to trade on Nasdaq, a securities firm had to become a 

member of the National Association of Securities Dealers, which involved 

‘enormous bureaucratic hurdles’, Whitcomb told ATD’s shareholders 

(Whitcomb, 1995). Once accepted into membership, a sufficiently well-

capitalized firm could then register with the NASD as a marketmaker for one 

or more stocks. Only then did a firm get the ‘Level III’ access, via a Nasdaq 

terminal, needed to post bids and offers on Nasdaq’s screens. To trade 

without that access, even an NASD member firm had generally either to strike 

a deal by telephone with a marketmaker or use Nasdaq’s Small Order 

Execution System (SOES, set up in 1982), via which a member could send 

orders – typically from retail customers – for a thousand shares or fewer to be 

executed automatically against a marketmaker’s quote. (Unlike an exchange 

such as the NYSE, the NASD never had a face-to-face trading floor.)  

In a period in which the minimum unit of price (and thus the minimum 

‘spread’ between the prices at which a marketmaker would buy a stock and 
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sell it) was still an eighth of a dollar, being a Nasdaq marketmaker was a 

profitable business. The role brought with it both formal obligations and an 

informal norm – vigorously policed by the harassment by their fellow 

marketmakers of those who violated it – not to display ‘odd-eighths’ price 

quotes such as $20⅛, $20⅜, etc. In the racist terminology then still common, 

to post a bid or offer with an odd-eighth price was to ‘make a Chinese market’, 

and (unless the bid or offer was very fleeting) could trigger an abusive 

telephone call from another marketmaker. The effect of the norm was to 

widen the ‘spread’ between the highest bid and lowest offer (which is the main 

source of marketmakers’ revenues) from 12.5 cents to a typical 25 cents 

(Christie and Schultz, 1994).  

The breach in this fixed-role system was created quite inadvertently by 

the SEC. During the 1987 stock market crash, many Nasdaq marketmakers – 

fearing continuing precipitous price falls – stopped processing SOES orders. 

After the crash, the SEC successfully pressured the NASD to make it 

obligatory for marketmakers to fill SOES orders at the prices they were 

displaying on Nasdaq’s screens. That ruling opened the breach. If a 

marketmaker’s staff were not monitoring Nasdaq’s screens sufficiently 

attentively, they might not alter their price quotations fast enough as market 

prices changed ― and traders who were paying closer attention could then 

use SOES to send orders (which a marketmaker now had to fill) that ‘picked 

off’ these stale quotes, for example buying shares at a price that the 
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marketmaker had not increased as prices rose.10 Increasingly large numbers 

of semi-professional traders (pejoratively dubbed ‘SOES bandits’ by the 

official marketmakers) seized these opportunities, using Nasdaq screens and 

SOES access provided – in crowded, sometimes makeshift trading rooms, 

often in rundown buildings in lower Manhattan – by ‘day trading’ firms that had 

succeeded in becoming NASD members. By the mid-1990s, there were more 

than 2,000 such ‘bandit’ traders (Harris and Schultz, 1998: 41).  

SOES gave these outsiders a direct route into the heart of a major 

fixed-role market. Nasdaq’s marketmakers tried everything they could to seal 

the breach – trying to bar access to SOES by ‘professional’ traders, trying to 

get the SEC’s permission to replace SOES with a new system without 

compulsory execution of trades, even death threats to individual bandits – but 

nothing worked. (Because Nasdaq was designed primarily to facilitate trading 

by telephone, it could not be anonymous. The firms displaying orders on-

screen and those sending them via SOES were all identifiable, their telephone 

numbers were easily to hand, and in practice the identities of individual 

leading ‘bandits’ were well known to Nasdaq’s marketmakers.) Tempers flared 

on both sides. Whitcomb, for example, watched, horrified, as a leading bandit 

																																								 																					
10	An NASD rule barred marketmakers from installing an automated system to update their 

quotes in the light of changes in other marketmakers’ quotes. According to interviewee EZ, 

who worked for the NASD in the 1990s, the rationale was to stop marketmakers evading their 

responsibilities by automatically ‘fading’ their bids and/or offers: altering their quotes so that 

they would never be executed.	
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‘in effect threatened … physically’ a top NASD official: ‘He made moves 

towards him while using exceedingly profane language’ (interview 2). 

 With the profits of ATD’s early-1990s’ NYSE trading shrinking, 

Whitcomb had realized ‘we needed a completely different act’ (interview 2). 

An acquaintance of Whitcomb’s, a professor of accounting, had a former 

student who had become a ‘SOES bandit’. ATD formed a joint venture with 

the professor and the trader, seeking to develop what Whitcomb calls ‘an 

automated SOES bandit system’ (Whitcomb interview 2; in his letters to ATD’s 

shareholders, Whitcomb used the more neutral term ‘SOES activist’). ATD’s 

traders ‘just sat down’ with bandits, watching what they did and asking them 

why they did it (interviewee C). It quickly became clear that ‘bandits’ predicted 

price changes by carefully monitoring changes in the array of marketmakers’ 

(non-anonymous) bids and offers on Nasdaq’s screens. If, for example, even 

a small number of marketmakers lowered their bids (and especially if they 

were marketmakers whose actions were regarded by ‘bandits’ as likely to 

presage price movements in the stock in question), then ‘bandits’ would use 

SOES to sell as quickly as they could. ‘[T]hey’d [the ‘bandits’ would] be like, 

“two … people [marketmakers] left [lowered their bids]” or “Goldman leads in 

this stock, and when Goldman leaves, everybody leaves, so I saw Goldman 

leave [lower its bid], so I hit it [i.e. sold the stock]”’ (interviewee C).11  

 ATD automated ‘bandit’ predictive reasoning of this kind. ‘Our 

computer scans the NASDAQ digital data feed for several hundred stocks’, 

																																								 																					
11	That ‘bandit’ reasoning was of this general form, and was profitable, was later confirmed by 

the quantitative analysis by Harris and Schultz (1998).	
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Whitcomb told ATD’s shareholders in January 1995, ‘watching for indications 

that the market makers in a stock are about to “fade their quotes” on one side 

[i.e. either bids or offers].’ Despite the distance between ATD’s Mount 

Pleasant headquarters and Nasdaq’s computer centre in Trumbull, 

Connecticut, ATD’s ‘automated SOES bandit’ was faster than the human 

beings whose predictive reasoning it mimicked. ‘What we were competing 

against [was] the … SOES guys’, says interviewee C. ‘Goldman leaves the 

offer, there would quickly be a thousand people trying to hit the offer [i.e. buy 

shares] … most of them … “point and click” [manual traders]’. HFT was still 

only nascent in the mid-1990s, and in my wider dataset I found only one other 

firm that had operated an automated SOES system akin to ATD’s (interviewee 

AG).  

The pocket of predictive ‘structure’ that human and automated SOES 

‘bandits’ exploited was created by the sociotechnical organization of Nasdaq: 

as noted, only registered marketmakers could post bids and offers on 

Nasdaq’s screens, and those bids and offers were therefore limited in number 

and not anonymous. The most likely reason why monitoring them enabled 

‘bandits’ to predict price movements was that marketmaking firms were often 

also broker-dealers that executed large orders from institutional investors 

(Smith, Selway and McCormick, 1998: 34). If, for example, a marketmaking 

broker-dealer was in the process of executing a large sell order (or had 

learned that such an order was being executed), then it would lower its bid 

prices to avoid buying shares at a price that was likely to fall. In effect, 

Nasdaq’s non-anonymous arrays of on-screen bids and offers thus broadcast, 

to anyone prepared to monitor them attentively enough, broker-dealers’ 
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private information – the information that had been the undoing of ATD’s 

Instinet trading. 

 Being ‘among the despised’ SOES bandits, as Whitcomb puts it 

(interview 2), was sometimes uncomfortable for ATD (‘we knew – or we felt – 

that NASD would like nothing better than to shut down a SOES bandit firm for 

a violation’), but this form of trading was crucial to ATD’s survival in the mid-

1990s: ‘it saved us’, says Whitcomb (interview 3). It was perfectly possible 

sometimes to make a profit of 25 cents per share traded: ‘you just made, 

whatever, $250 off of them [on the maximum SOES order, for 1,000 shares]. 

So they [Nasdaq’s marketmakers] hated us’ (interviewee C). 

More important, however, in the long run was ATD’s involvement in a 

set of new trading venues established in the mid-1990s, often initially to serve 

the needs of ‘bandits’ and other ‘day-traders’ of shares listed on Nasdaq. 

While ‘bandits’ used SOES to create their trading positions, they could not, 

unless they were very lucky, use it profitably to close those positions (Harris 

and Schultz, 1998), so needed other trading venues on which to do so. The 

most important of these was Island, set up in 1995, based in the lower 

Manhattan offices of Datek (a leading ‘bandit’ firm). Island was led by a 

talented programmer, Josh Levine, who combined immersion in bandits’ 

trading culture with a deep commitment to ‘information libertarianism’ (see 

MacKenzie and Pardo-Guerra, 2014). 

 Any Island user could place bids and offers direct into Island’s order 

book, and Levine provided a fast communications protocol, OUCH, for doing 

this algorithmically. Execution of orders was fully automatic and also very fast 
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– there was no equivalent of an NYSE specialist having first to press ‘enter’ – 

and (equally crucially from the viewpoint of automated marketmaking) orders 

that had become stale could quickly be cancelled. There was no need to 

‘screen scrape’: Island provided ‘ITCH’, a fast direct datafeed which a 

computer could use to construct a mirror of Island’s order book. In short, 

Island was an environment (at its core, a technical system) materially suited to 

trading algorithms. 

 Island’s origins in the world of ‘SOES bandits’ caused it initially to be 

viewed as disreputable: Island staff were told ‘never, ever [to] mention … who 

was a client of Island … people did not want it to be known that they were 

trading on Island’, says interviewee C. ATD had no such prejudice, and 

quickly saw how well suited the new venue was to algorithmic trading. ATD 

became the first firm, Datek aside, to trade on Island, and soon became a 

very heavy user, boosting Island’s trading volumes and thus its attractiveness 

as a trading venue. (Island initially had a daily limit of 999,999 orders per 

connection. Interviewee B realized one day that ATD was about to overrun 

that limit – ‘I was like, oh crap’ – but fortunately had another connection 

available to him.)  

ATD and the other nascent HFT firms also became important 

marketmakers on the other new share-trading venues (unlike on Nasdaq, any 

firm could make markets on them), continuously posting bids and offers with 

prices – often informed by Chicago’s futures prices (interviewee AB) – 

frequently marginally superior to those available on Nasdaq (Biais, Bisière 

and Spatt, 2003). Year after year, the new ‘algorithm-friendly’ venues 

increased their share of trading, until first Nasdaq and then the NYSE had to 
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copy their features to remain competitive, a process that was facilitated by 

Nasdaq buying Island and the NYSE buying another of the new electronic 

trading venues, Archipelago. 

 

Conclusion 

A correlate of many historic changes is a transformation of ‘common sense’. 

Even as late as the mid-1990s it seemed ‘obvious’ that a well-organized 

financial market needed a fixed-role structure, with (for example) officially 

designated marketmakers, and traders who ‘picked off’ marketmakers’ stale 

prices could therefore be seen as doing something reprehensible, even 

despicable. Within less than a decade, however, it was marketmakers’ 

privileges that had begun to seem improper. 

Whitcomb and other financial economists played a role in the 

transformation. Whitcomb helped set up an Electronic Traders Association to 

make the case to the SEC and Congress that ‘SOES bandits were not doing 

anything evil or dishonest, and might even be performing a service by putting 

some pressure on [bid-offer] spreads’ (Whitcomb interview 3). The 

Association’s efforts were helped by nationwide news coverage of the 

discovery by financial economists William Christie and Paul Schultz (1994) of 

the informal norm among Nasdaq marketmakers to keep spreads wide by 

avoiding odd-eighths price quotations. The odd-eighths scandal helped pave 

the way for the SEC’s 1997 ‘Order Handling Rules’, which forced Nasdaq’s 

official marketmakers to display customers’ bids and offers on-screen when 

their prices were better than their own. Having an order book that was visible 
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to some participants and not others (as on the NYSE) began to seem 

unacceptable. Island mounted a pointed advertising campaign around the 

slogan, ‘We’ll show you our book. Why won’t they?’ (interviewee C).  

None of this, however, would have been effective in undermining fixed-

role markets without the concrete demonstration – on Island and other new 

electronic venues – that high volumes of trading and competitive prices could 

be achieved without official marketmakers. ATD’s algorithms, those of the 

other new, unofficial ‘electronic marketmakers’, and HFT more generally, were 

crucial to that. A decisive shift in US share trading towards all-to-all markets 

was underway.  

The consequences for exchanges have been wrenching: in 2013, for 

example, the NYSE, with its history stretching back more than two centuries, 

was bought by an electronic newcomer, the Intercontinental Exchange. 

Previously central roles disappeared or lost privileges and responsibilities; the 

economic value of occupying them plummeted. At the end of the 1990s, being 

an NYSE specialist was still very profitable, with operating margins that could 

exceed 50 percent (Vinzant, 1999). In 2000, Goldman Sachs paid $6.5 billion 

to acquire the NYSE specialists Spear, Leeds & Kellogg. In 2014, Goldman 

sold its NYSE business to the Dutch HFT firm IMC for less than a hundredth 

of that: $30 million (Dolgopolov, 2015: 7). 

In ATD’s early years, ‘we were begging to get on [exchange] systems’, 

and meeting resistance, recalls interviewee B. ‘New York [Stock Exchange]: 

“oh, don’t even come here.”’ By the early 2000s, exchanges discovered that 

this attitude to automated trading was no longer tenable. They needed 
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marketmaking algorithms and other forms of HFT to sustain trading volumes 

in the face of competition from new venues such as Island. ‘[T]here came a 

point where they were begging to have us bring our volume to their systems. 

… New York: “oh, please come here.”’  

To attract firms that traded algorithmically, traditional exchanges such 

as the NYSE had to reorganize trading fundamentally, creating technical 

systems within which algorithms had the data to predict prices and the 

capacity to act on those predictions with minimal delay. (This can be seen as 

a strong performative effect: the use of algorithms helped create markets 

materially better suited to algorithms.) For example, almost all US share-

trading venues had to offer trading firms colocation: the capacity to place their 

servers in the same building as an exchange’s systems. Almost the entire 

range of interviewee B’s ‘game pieces’ – the data needed to identify pockets 

of predictive ‘structure’ – were made available. (The chief exception to the 

availability of data is firms’ identities. In fixed-role markets, which firm has 

placed which order is often knowable, and that is usually seen as acceptable, 

even necessary as a way of making participants’ economic behaviour visible 

and thus subject to informal sanctions. In contrast, every financial market of 

which I am aware that has more of an all-to-all organization is anonymous.) 

Because so much of our world (not just financial markets), has been 

reshaped – sometimes by algorithms – to become materially suited to 

algorithms, it is now easy unconsciously to naturalize algorithmic prediction: 

not to see extent to which core practices of prediction (by HFT and other 

algorithms) are possible because of ‘structure’ resulting from material 
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arrangements that are the outcome of political-economic struggles.12  

Consider, for example, the continuing importance to HFT (amply testified to by 

the interviewees in my wider dataset) of changes in index-futures prices and 

order books as predictors of share-price movements. That pocket of predictive 

structure is in no sense ‘natural’: it depends, ultimately, on the fact that futures 

and shares fall under separate Federal regulators – the CFTC and SEC – with 

higher leverage permitted in futures. That arrangement has been challenged 

repeatedly, but unsuccessfully, most recently in 2012, when Congressional 

Representatives Barney Frank and Michael Capuano put forward a bill to 

merge the CFTC and SEC. The Frank-Capuano bill failed, in particular 

because of opposition from the Senate Agriculture Committee, to which the 

CFTC reports because of that body’s roots in regulating agricultural futures. 

As I have emphasized, ATD’s history throws light on fundamental 

changes in US share trading. I should, however, also note that this was the 

only market in which ATD was involved in any large scale. Other HFT firms 

were and are involved in the trading of other kinds of asset (futures, foreign 

exchange, benchmark US Treasury bonds, options, interest-rate swaps, and 

some physical commodities), and in trading in Europe, East Asia, Brazil and 

Australia as well as in the US. Any adequate treatment of the overall political 

economy of high-frequency trading thus needs to cast its net far more widely 

than this article has. Furthermore, even the political economy of US share 

trading has important facets that have not been examined here in any detail. 

Regulation, for example, has shaped US share trading profoundly, but in this 

article I have treated it in the way ATD experienced it, as a predominantly 

																																								 																					
12	I am extremely grateful to Martha Poon for comments that led me to this formulation.	
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external sphere on which the firm had only limited direct impact.13 Nor have I 

examined in any detail the relations between the regulation of financial 

markets and the political system. 

Future publications will tackle such issues. However, it is already clear 

from my interviews that the political economy of algorithmic prediction 

developed in this article throws light on the other domains in which HFT is 

active. There too, pockets of predictive structure exist, some of which are the 

result of political-economic processes. Who or what has access to the data 

needed to identify potentially profitable pockets is a political-economy matter, 

as is the capacity actually to realize those profits (in some domains, that 

capacity is restricted by the blatant exercise of market power). When access 

to data and the constraints on and opportunities for trading change, the 

balance of power among institutional actors is threatened. In some cases, the 

status quo has so far proved resilient; in others, fixed roles are now beginning 

to crumble there too.  
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Senior management:     6  9% 
Administration/compliance/marketing:           17          25% 
Technical:               29          43% 
Quantitative analysis:     2  3% 
Trading:       5  7% 
Mixed roles including trading:    9          13% 
               ___ 
                68 
 
 
 
 
Table 1.  Staff roles at ATD, early 2000s.  
 
Source: staff list in interviewee B’s files, exact date unknown. Mixed roles 
include, e.g., ‘Trading/Research’ and ‘Trader & Modeler’. 
 


